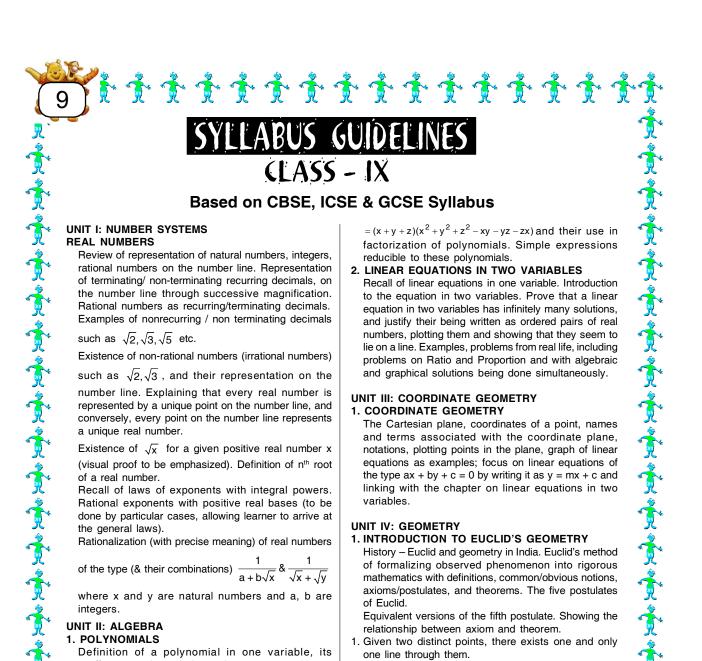
MATHEMAGIC ACTIVITY BOOK

CLASS - IX

Price : Rs. 60 © Copyright reserved


Second Edition : October 2007

Published by: Eduheal Foundation, 103, Ground Floor, Taj Apartment, Near VMMC & Safdarjung Hospital, New Delhi-110029, Telefax: 011-26161014.

e.mail: info@eduhealfoundation.org, website: www.eduhealfoundation.org

Topics Page No. Syllabus Guidelines 04 Maths Here and There 06 Beat The Calculator 07 Peoples in Mathematics 11 Why Calculate π 13 Brain Benders 16 Digit Sums 17 Useful Shape 19 Knowledge of Math - A Reward 21 Genius Test 22 Curious Mathematical Calculation 23 Addition Made Easier 24 Interactive Activities : Maths Puzzles 26 Brain Twisters 27 Trick to Amaze Your Friend 29 Mathematics to Bring Incredible Results 30 Sample Questions 31 11 I Sample Questions Answers 31 32

2. Two distinct lines cannot have more than one point in

1. If a ray stands on a line, then the sum of the two adjacent angles so formed is 180° and the converse.

2. If two lines intersect, the vertically opposite angles are

Results on corresponding angles, alternate angles, interior angles when a transversal intersects two

4. Lines, which are parallel to a given line, are parallel.

6. If a side of a triangle is produced, the exterior angle so

formed is equal to the sum of the two interiors opposite

5. The sum of the angles of a triangle is 180°.

2. LINES AND ANGLES

parallel lines.

coefficients, with examples and counter examples, its

terms, zero polynomial. Degree of a polynomial. Constant, linear, quadratic, cubic polynomials; monomials, binomials, trinomials. Factors and

Remainder Theorem with examples and analogy to

integers. Statement and proof of the Factor Theorem. Factorization of $ax^2 + bx + c, a \neq 0$ where a, b, c are

real numbers, and of cubic polynomials using the Factor

Recall of algebraic expressions and identities. Further

 $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx, (x \pm y)^3$

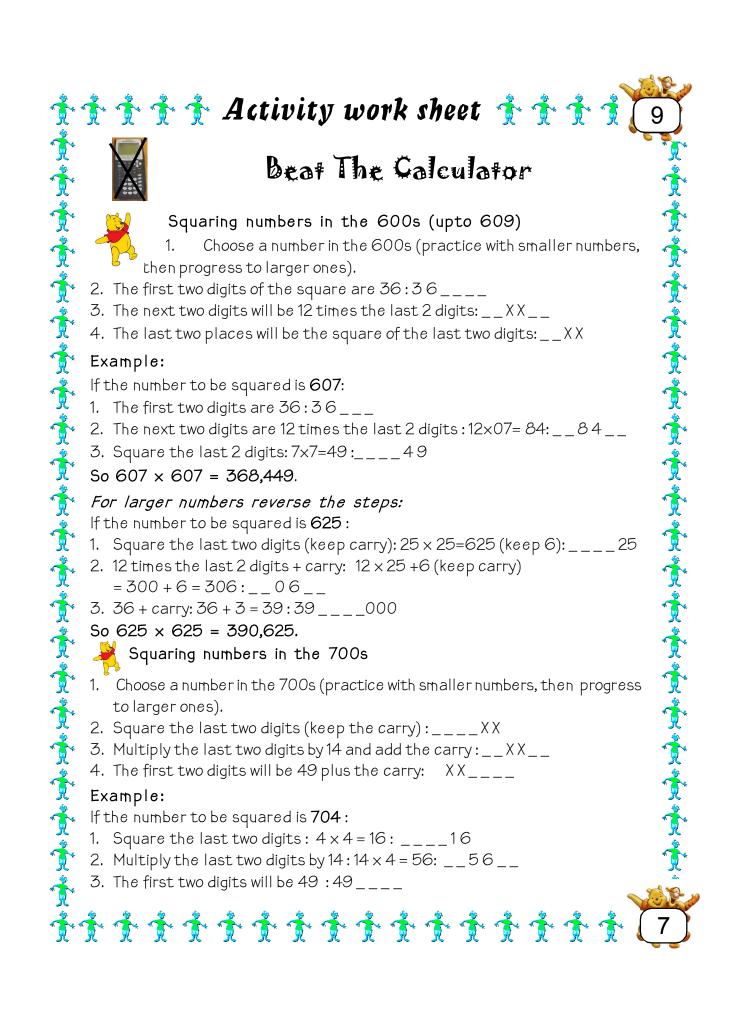
 $= x^3 \pm y^3 \pm 2xy(x \pm y), x^3 + y^3 + z^3 - 3xyz$

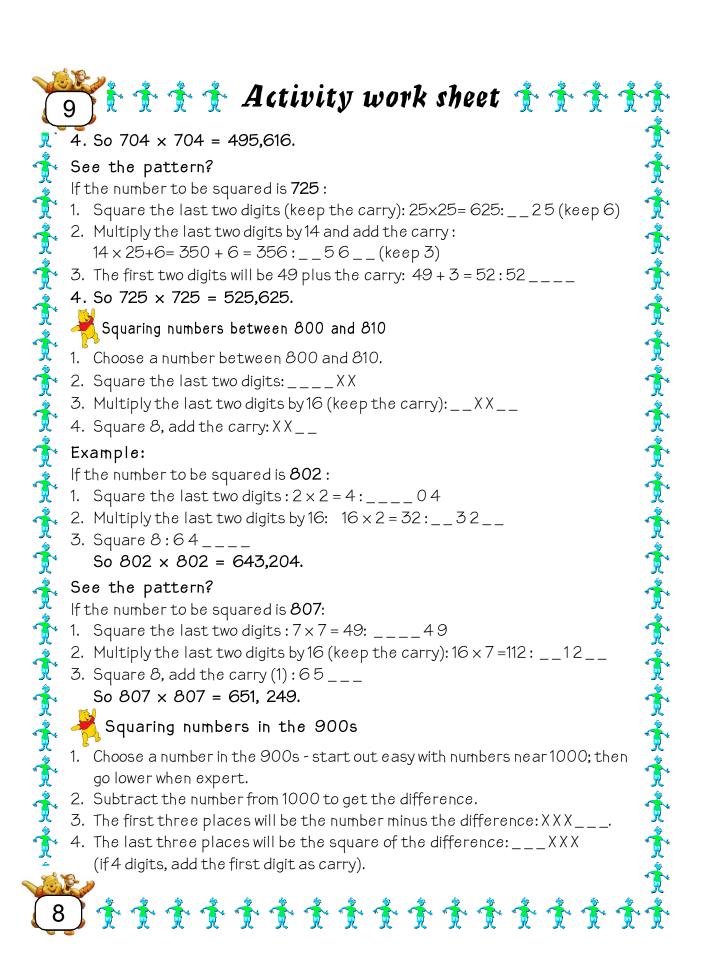
identities of the type

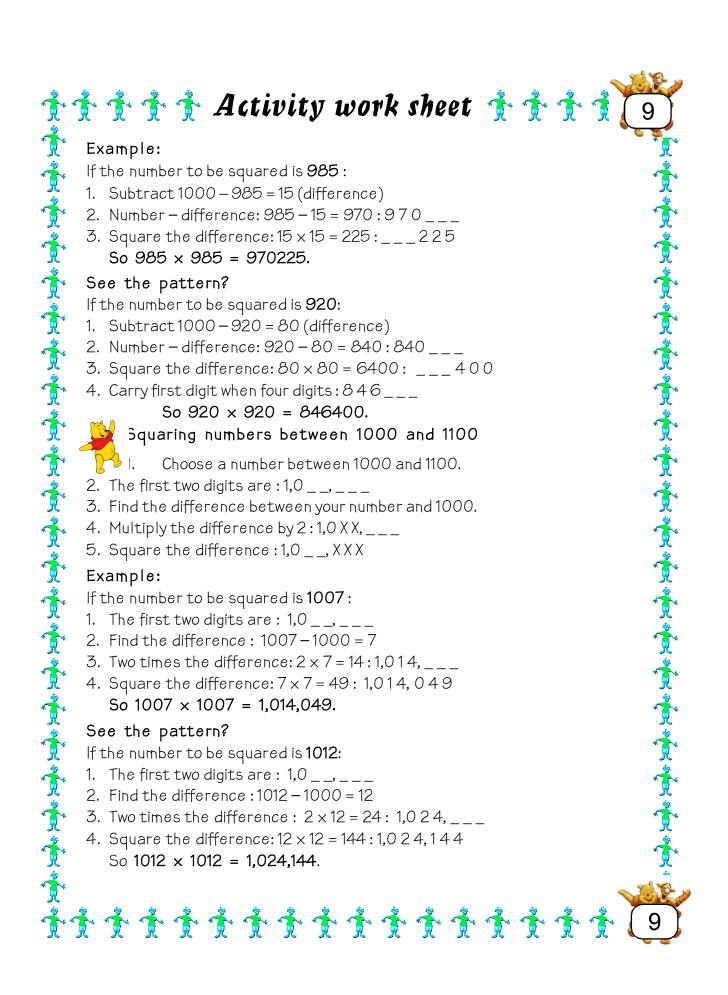
multiples. Zeros/roots of a polynomial/equation.

********* through the center of a circle to bisect a chord is 1. Two triangles are congruent if any two sides and the perpendicular to the chord. included angle of one triangle is equal to any two sides 3. There is one and only one circle passing through three and the included angle of the other triangle (SAS given non-collinear points. 4. Equal chords of a circle (or of congruent circles) are Congruence). 2. Two triangles are congruent if any two angles and the equidistant from the center(s) and conversely. 5. The angle subtended by an arc at the center is double included side of one triangle is equal to any two angles and the included side of the other triangle (ASA the angle subtended by it at any point on the remaining part of the circle. 3. Two triangles are congruent if the three sides of one 6. Angles in the same segment of a circle are equal. triangle are equal to three sides of the other triangle 7. If a line segment joining two points subtends equal angle (SSS Congruence). at two other points lying on the same side of the line 4. Two right triangles are congruent if the hypotenuse containing the segment, the four points lie on a circle. and a side of one triangle are equal (respectively) to 8. The sum of the either pair of the opposite angles of a the hypotenuse and a side of the other triangle. cyclic quadrilateral is 180° and its converse. 5. The angles opposite to equal sides of a triangle are 7. CONSTRUCTIONS egual. 6. The sides opposite to equal angles of a triangle are 1. Construction of bisectors of line segments & angles, 60°, 90°, 45° angles etc, equilateral triangles. 7. Triangle inequalities and relation between 'angle and 2. Construction of a triangle given its base, sum/difference facing side' inequalities in triangles. of the other two sides and one base angle. 3. Construction of a triangle of given perimeter and base 4. QUADRILATERALS angles. 1. The diagonal divides a parallelogram into two congruent **UNIT V: MENSURATION** triangles. 2. In a parallelogram opposite sides are equal, and 1. AREAS Area of a triangle using Hero's formula (without proof) conversely. 3. In a parallelogram opposite angles are equal and and its application in finding the area of a quadrilateral. 4. A quadrilateral is a parallelogram if a pair of its opposite 2. SURFACE AREAS AND VOLUMES sides is parallel and equal. Surface areas and volumes of cubes, cuboids, spheres 5. In a parallelogram, the diagonals bisect each other and (including hemispheres) and right circular cylinders/ conversely. 6. In a triangle, the line segment joining the mid points of any two sides is parallel to the third side and its **UNIT VI: STATISTICS & PROBABILITY** converse. 1. STATISTICS Introduction to Statistics: Collection of data, presentation of data - tabular form, ungrouped/grouped, bar graphs, Review concept of area, recall area of a rectangle. histograms (with varying base lengths), frequency 1. Parallelograms on the same base and between the polygons, qualitative analysis of data to choose the same parallels have the same area. correct form of presentation for the collected data. 2. Triangles on the same base and between the same Mean, median, mode of ungrouped data. parallels are equal in area and its converse. 2. PROBABILITY History, Repeated experiments and observed frequency approach to probability. Through examples, arrive at definitions of circle related Focus is on empirical probability. (A large amount of concepts, radius, circumference, diameter, chord, arc, time to be devoted to group and to individual activities subtended angle. 1. Equal chords of a circle subtend equal angles at the to motivate the concept; the experiments to be drawn from real - life situations, and from examples used in center and its converse. 2. The perpendicular from the center of a circle to a chord the chapter on statistics). bisects the chord and conversely, the line drawn

Maths Here and There


When you buy a car, follow a recipe, or decorate your home, you're using math principles. People have been using these same principles for thousands even millions of years, across countries and continents. Whether you're sailing a boat off the coast or building a house, you're using math to get things done.


How can math be so universal? First, human beings didn't invent math concepts; we discovered them. Also, the language of math is numbers, not English or German or Hindi. If we are well versed in this language of numbers, it can help us make important decisions and perform everyday tasks. Math can help us to shop wisely, buy the right insurance, remodel a home within a budget, understand population growth, or even can understand the mathematical trick behind any game.


Mathematics is the only language shared by all human beings regardless of culture, religion, or gender. Pi is still 3.14159 regardless of what country you are in. Adding up the cost of a basket full of groceries involves the same math process regardless of whether the total is expressed in dollars, rubles, or yen. With this universal language, all of us, no matter what our unit of exchange, are likely to arrive at math results the same way.

Very few people, if any, are literate in all the world's tongues—English, Chinese, Arabic, Bengali, and so on. But virtually all of us possess the ability to be "literate" in the shared language of math. This math literacy is called numeracy, and it is this shared language of numbers that connects us with people across continents and through time. It is what links ancient scholars and medieval merchants, astronauts and artists, peasants and presidents.

With this language we can explain the mysteries of the universe or the secrets of DNA. We can understand the forces of planetary motion, discover cures for catastrophic diseases, or calculate the distance from Boston to Bangkok. We can make chocolate chip cookies or save money for retirement. We can build computers and transfer information across the globe. Math is not just for calculus majors. It's for all of us. And it's not just about pondering imaginary numbers or calculating difficult equations. It's about making better daily decisions and, hopefully, leading richer, fuller lives.

Start with lower numbers and then extendyour expertise to all the numbers between 1000 and 1100. Remember to add the first digit as carry when the square of the difference is four digits.

🙀 Squaring numbers between 2000 and 2099

7 1. Choose a number between 2000 and 2099. (Start with numbers below 2025 to begin with, then graduate to larger numbers.)

- 2. The first two digits are: 40 _ ____
- 3. The next two digits are 4 times the last two digits: 40 X X _ _ _
- 4. For the last three digits, square the last two digits in the number chosen (insert zeros when needed): $40_{-}XXX$

Example:

If the number to be squared is 2003:

- 1. The first two digits are: 40 _ _ _ _
 - 2. The next two digits are 4 times the last two: $4 \times 3 = 12 : 12 : 12 : 12$
 - 3. For the last three digits, square the last two: $3 \times 3 = 9 : ___0 09$ So $2003 \times 2003 = 4,012,009$.

See the pattern?

For larger numbers, reverse the order:

- 1. If the number to be squared is 2025:
- 2. For the last three digits, square the last two:25x25=625: ____625
- 3. The middle two digits are 4 times the last two (keep the carry): $4 \times 25 = 100$ (keep carry of 1): __ 0 0 ___
- 4. The first two digits are 40 + the carry: 40 + 1 = 41: 41 2 2 4 = 41So $2025 \times 2025 = 4,100,625$.

*	Q ₂	Now its your chance					7
		Square the following numbers.					
"		1. 631	2. 605	3. 650	4. 675	5. 685	" 凡 "
W.		Square the following numbers.					***
K		1. 710	2. 724	3. 734	4. 770	5. 790	R
	Square the following numbers.						***
K.		1. 801	2. 805	3. 802	4. 804	5. 808	K.
***		Square the following numbers.					****
) (1. 915	2. 927	3. 1015	4. 2045	5. 2066	J(ŵ
	239						****
40	* 2 2	و و و	<u> </u>	و و و	و و و	ۇ ۋ ۋ	· 🔌
(10	'\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T * T * 1		R TR TR	黄黄素	**************************************	**************************************

Peoples in Mathematics Thales Thales (640 - 546 B.C.) was a philosopher, who studied mathematics, astronomy, physics and other sciences. He was born in Greece but went to Egypt to study. He measured the height of a pyramid using the idea of similarity and predicted the date of an eclipse of the sun. He is sometimes called the father of mathematics and astronomy. Pythagoras Pythagoras (580-500 B.C.) was a philosopher, who studied mathematics, music and other subjects. He is famous because of the theorem named him. William Jones Willam jones gave the symbol of π to denote the ratio of the circumference to the diameter of a circle. Euclid Euclid, the Greek mathematician who lived in Alexandria is famous for geometry. He wrote 13 volumes on geometry, which became the most important works in the study of geometry and have been used throughout the world. He was born in 300 BC in Greece. Archimedes Archimedes (287-212 B.C.) was a famous Greek physicist and mathematician. He made important discoveries in geometry, hydrostatics and mechanics. He also invented the principle of lever and gave the concept of density. Leonardo da Vinci He used perspective to paint solid figures on a plane canvas. Perspective is a way of showing three dimensional objects on paper. His enquiring scientific mind led him to investigate every aspect of natural world from anatomy to aerodynamics. Nicolaus Copernicus

Copernicus (1473-1543) was a famous astronomer, mathematician and physicist of Poland. His famous idea was that the sun is the centre of the universe and the earth revolves round the sun and